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Abstract. We construct Drinfel’d twists for the rational sl(n) XXX model giving rise to a
completely symmetric representation of the monodromy matrix. We obtain a polarization-free
representation of the pseudoparticle creation operators figuring in the construction of the Bethe
vectors within the framework of the quantum inverse scattering method. This representation enables
us to resolve the hierarchy of the nested Bethe ansatz for the sl(n) invariant rational Heisenberg
model. Our results generalize the findings of Maillet and Sanchez de Santos for sl(2) models.

1. Introduction

In a seminal paper Maillet and Sanchez de Santos [1] revealed the uses of factorizing Drinfel’d
twists [2] for inhomogeneous statistical spin-chain models for which the method of the
algebraic Bethe ansatz is available. Those authors used the rational XXX and the trigonometric
XXZ models as paradigms for their argument, being realized on tensor products of two-
dimensional (fundamental) representations of the underlying group sl(2). They showed that the
similarity transformation provided by the Drinfel’d twist gives rise to a completely symmetric
representation of the respective monodromy matrices and implies simplifying features in the
new basis—to be described in detail below—for the various operators in the grid of the
monodromy matrix.

The results of [1] have been generalized to any finite-dimensional irreducible
representation of the Yangian Y (sl(2)) [3] and have been used to achieve substantial
simplifications in the calculation of form factors [4], in the determination of thermodynamic
quantities such as the spontaneous magnetization [5], and to solve the so-called quantum
inverse problem [6, 7], that is, to express the local spin operators of the microscopic model
through the operators figuring in the algebraic Bethe ansatz.

The most striking aspect of the results in [1] is, we think, related to the fact that no
polarization clouds are attached to quasiparticle creation and annihilation operators in the
basis in which the monodromy matrix is completely symmetric. This means, in terms of
particle notation, that no virtual particle–antiparticle pairs are present in the wavevectors
generated by the action of the creation operators to the ground state (the reference state of
the Bethe ansatz), or in spin chain terminology that the creation and annihilation operators
are constructed exclusively from local spin-raising and spin-lowering operators, respectively
(that is, there are no compensating pairs of local raising and lowering spin operators). It was
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noted in [1] that this latter feature underlies the neat connection between the quantum spin
chain models and their respective quasiclassical limits, which are Gaudin magnets [8], insofar
as the appearance of the quasi-particle operators of the quantum models in the particular basis
differs from the corresponding operators in the quasiclassical limit models only by a ‘diagonal
dressing’ (see below).

This connection motivated us to attempt a generalization of the work of Maillet and
Sanchez de Santos towards models based on higher-rank groups. We will deal here with the
simplest conceivable extension in the form of the rational XXX model with sl(n) as underlying
group.

A notorious technical difficulty of integrable models with underlying higher-rank groups
arises from the intricacies of the recursive procedure of the hierarchical Bethe ansatz [9]. It
has been known for some time [10] that the recursion of the hierarchical ansatz can be resolved
in the case of the quasiclassical limit of the rational models, i.e. the rational Gaudin magnets.
Constructing the analogue of the factorizing twist of [1] for higher-rank models one may
hope—in view of the affinity of the special basis rendered by the factorizing twist with the
quasiclassical limit model—for an explicit resolution of the Bethe ansatz hierarchy. This will
indeed be our main result for the spin model under consideration: an explicit representation
of the sl(n) Bethe wavevectors, solving therewith (for the wavevectors) the hierarchy.

The paper is organized as follows. Section 2 sets the notation, section 3 is devoted to
the construction of the factorizing twist. In section 4 we give the expressions for the sl(n)

generators and for the operators contained in the monodromy matrix in the basis mediated by
the factorizing twist. In section 5 we discuss the resolution of the Bethe hierarchy. Section 6
contains our conclusions. Some technical details are relegated to appendices.

2. Basic definitions and notation

Below we shall use much of the notation of [1, 4]. We consider the sl(n) Yangian R-matrix to
depend on a spectral parameter λ and a quantum deformation parameter η:

R12(λ) = b(λ)1l12 + c(λ)P12 (1)

where

b(λ) = λ

λ + η
c(λ) = η

λ + η
. (2)

The matrix R12 is meant to represent a map C
n
(1) ⊗ C

n
(2) → C

n
(1) ⊗ C

n
(2) (Cn

(1)
∼= C

n
(2)

∼= C
n)

and P12 is the permutation operator acting in C
n
(1) ⊗ C

n
(2). Local spectral parameters attached

to vector spaces C
n
(i) isomorphic to C

n will be called zi . We will also use the notation

bij = b(zi − zj ) cij = c(zi − zj ). (3)

It is well known that R-matrices defined by (1) satisfy the Yang–Baxter equation in vertex
form,

R12(z1 − z2)R13(z1 − z3)R23(z2 − z3) = R23(z2 − z3)R13(z1 − z3)R12(z1 − z2) (4)

and the unitarity relation

R12R21 = 1l (5)

where Rij = Rij (zi − zj ) acts non-trivially on the tensor product C
n
(i) ⊗ C

n
(j).

Our convention for the matrix indices is as follows:

(Z)
γ δ

β α = (XY )
γ δ

β α = (X)
γ δ

j1 j2
(Y )

j1 j2
β α . (6)
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With the notation T0,23 = R03R02 R0i ≡ R0i (zi), where the index 0 refers to an auxiliary space
C

n
(0), one may rewrite equation (4) in the form of a Faddeev–Zamolodchikov relation

R
σ23
23 T0,23 = T0,32R

σ23
23 (7)

with σ23 the transposition of space labels (2, 3).
We use here and subsequently a notation (which may not be in line with common use) that

the labels in the upper row are permuted relative to lower indices according to the permutation
inscribed, which reads in the example at hand as (Rσ23)

α2 α3
β3 β2

.
It is straightforward to generalize equation (7) to an N -fold tensor product of spaces.
With the definition T0,1...N = R0N . . . R01 the generalization reads

Rσ
1...N T0,1...N = T0,σ (1)...σ (N)R

σ
1...N (8)

where σ is now an element of the symmetric group SN and Rσ
1...N denotes a product of R-

matrices occurring in (7), the product corresponding to a decomposition of σ into elementary
transpositions.

The order of the upper matrix indices αi of Rσ reads according to the above prescription
as follows: (

Rσ
1...N

)ασ(N)...ασ(1)

βN ...β1
. (9)

Equation (8) implies the composition law (note the difference to the composition law used in
[1])

Rσ ′σ
1...N = Rσ

σ ′(1)...σ ′(N)R
σ ′
1...N (10)

for a product of two elements in SN . The factor Rσ ′
σ(1)...σ (N) on the right-hand side of

equation (10) satisfies the relation

Rσ ′
σ(1)...σ (N)T0,σ (1)...σ (N) = T0,σσ ′(1)...σσ ′(N)R

σ ′
σ(1)...σ (N). (11)

3. The F -matrix and some of its properties

The starting point of [1] is the Drinfel’d factorizing twists of the elementary sl(2) R-matrix:

R12 = F −1
21 F12

where F12 is given by formula (90) of [1]

F12 =


1 0 0 0
0 1 0 0
0 c(z1 − z2) b(z1 − z2) 0
0 0 0 1

. (12)

The generalization of this formula to the sl(n) case is of the form

F12 =
∑

n�α2�α1

P 1
α1

P 2
α2

1l12 +
∑

n�α1>α2

P 1
α1

P 2
α2

R
σ12
12 . (13)

Here [P i
α]k,l = δk,αδl,α is the projector on the α component acting in ith space.

Generalizing this factorization matrix to the N -site problem one has to satisfy at least
three properties for the F -matrix (see [1, 4]):

(A) factorization, that is

Fσ(1)...σ (N)(zσ(1), . . . , zσ(N))R
σ
1...N (z1, . . . , zN ) = F1...N (z1, . . . , zN ) (14)

for any permutation σ ∈ SN ;
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(B) lower-triangularity;
(C) non-degeneracy.

Proposition 3.1. The following expression for the F -matrix:

F1...N =
∑
σ∈SN

∑∗

ασ(1)...ασ(N)

N∏
i=1

P σ(i)
ασ(i)

Rσ
1...N (z1, . . . , zN ) (15)

satisfies the properties A, B and C. The sum
∑∗ is to be taken over all non-decreasing sequences

of the labels ασ(i) which are increasing at places where the permuted index is decreasing
(σ(i + 1) < σ(i)), namely, labels αi should satisfy one of two inequalities for each pair of
neighbouring spaces labels:

ασ(i+1) � ασ(i) if σ(i + 1) > σ(i)

ασ(i+1) > ασ(i) if σ(i + 1) < σ(i).
(16)

Proof. First of all let us note that the lower-triangularity can be traced back to the form of
the elementary R-matrix using the definition of F , equation (15). Indeed, the ordering (16)
just corresponds to the lower-triangularity of the matrix F . Non-degeneracy follows from the
lower-triangularity and the fact that all diagonal elements are non-zero. Apart from that we
shall give below the explicit form of F −1.

To prove the factorization property A let us, as above, represent the arbitrary permutation
σ in the form the composition of k elementary transpositions σi , i.e.

σ = σ1 . . . σk.

The important structural feature of equation (15) is that it can be decomposed stepwise into
elementary transpositions:

Fσ(1)...σ (N) Rσ
1...N = Fσ1σ2...σk(1,...,N) R

σk

σ1σ2...σk−1(1,...,N) R
σk−1

σ1σ2...σk−2(1,...,N) . . . R
σ1
1...N

= Fσ1σ2...σk−1(1,...,N) R
σk−1

σ1σ2...σk−2(1,...,N) R
σk−2

σ1σ2...σk−3(1,...,N) . . . R
σ1
1...N

= · · · · · · · · · = Fσ1(1,...,N) R
σ1
1...N = F1...N

where the composition law (10) was used. So we have to prove equation (15) for elementary
transpositions only.

Let σi be the elementary transposition {i, i + 1} → {i + 1, i}. We consider the product
F1...i+1 i...N R

σi

1...N . With the help of equations (15) and (10) we obtain

F1...i+1 i...N R
σi

1...N = Fσi(1...i i+1...N)R
σi

1...N

=
∑
σ∈SN

∑∗(i)

ασi σ (1)...ασi σ (N)

N∏
j=1

P σiσ(j)
ασi σ(j)

Rσ
σi(1,...,N)R

σi

1...N

=
∑
σ∈SN

∑∗(i)

ασi σ (1)...ασi σ (N)

N∏
j=1

P σiσ(j)
ασi σ(j)

R
σiσ
1...N (17)

with
∑∗(i) being defined by the restricting conditions

ασiσ (j+1) � ασiσ (j) if σ(j + 1) > σ(j)

ασiσ (j+1) > ασiσ (j) if σ(j + 1) < σ(j).
(18)
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(It may be helpful to bear in mind that the ordering prescription has to be executed according
to the shifted labels j̃ = σi(j).) Substituting in (17) σ̃ for σiσ one arrives at

F1...i+1 i...N R
σi

1...N =
∑
σ̃∈SN

∑∗

ασ̃(1)...ασ̃ (N)

N∏
j=1

P σ̃(j)
ασ̃ (j)

Rσ̃
1...N (19)

with the defining restrictions of
∑∗ now of the form

ασ̃(j+1) � ασ̃(j) if σiσ̃ (j + 1) > σiσ̃ (j)

ασ̃ (j+1) > ασ̃(j) if σiσ̃ (j + 1) < σiσ̃ (j)
(20)

which has a slightly different appearance in comparison to (16). Elementary combinatorial
considerations lead to the conclusion that the stipulations (16) and (20) give the same result as
long as σ −1(i) and σ −1(i + 1) do not happen to be on neighbouring places, that is if not

σ −1(i) = σ −1(i + 1) ± 1. (21)

If (21) holds we have to appeal to the specific form of the R-matrix to complete the argument.
Comparing the right-hand side of equation (19) in connection with (20) to the right-hand

side of equation (15) in connection with (16), one notes that a discrepancy is certainly excluded
if the strict inequality is implied in the step from σ −1(i) to σ −1(i + 1) (if σ −1(i + 1) is larger
than σ −1(i)), or from σ −1(i +1) to σ −1(i) if the reversed order is assumed. However, for equal
group labels at the two neighbouring places in question, the representation of the additional
transposition of i and i + 1 in (15) as compared with (19) has no effect, since it supplies a unit
factor due to the projectors.

This completes the proof of the proposition. �

Remark. The most general matrix F̃ satisfying the above conditions A and C differs from the
special solution of the preceding theorem by a non-degenerate, completely symmetric matrix
factor [1],

F̃1...N (z1, . . . , zN ) = X1...N (z1, . . . , zN )F1...N (z1, . . . , zN )

X1...N (z1, . . . , zN ) = Xσ(1)...σ (N)(zσ(1), . . . , zσ(N)) ∀σ ∈ SN .

Indeed, it is easy to see that F̃ , together with F , satisfies the factorization equation (14).
Conversely, suppose that both F and F̃ satisfy (14). It follows that

F −1
σ(1)...σ (N)F1...N = F̃ −1

σ(1)...σ (N)F̃1...N

and therefore

F1...N F̃ −1
1...N = Fσ(1)...σ (N)F̃

−1
σ(1)...σ (N).

Hence it follows that

X1...N = F1...N F̃ −1
1...N

is non-degenerate and completely symmetric and transforms F̃ into F , X1...N F̃1...N = F1...N .

Furthermore, we need the inverse operator F −1. To find its expression we have to prove
the following

Proposition 3.2. The operator F ∗ defined by the formula

F ∗
1...N =

∑
σ∈SN

∑∗∗

ασ(1)...ασ(N)

R
(t) σ
1...N (z1, . . . , zN )

N∏
i=1

P σ(i)
ασ(i)

(22)
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with the shorthand notation

R
(t) σ
1...N ≡ Rσ −1

σ(1,...,N) (23)

and
∑∗∗ is taken over all possible αi which satisfy one of the two inequalities for each

neighbouring pair of spaces i and i + 1:

ασ(i+1) � ασ(i) if σ(i + 1) < σ(i)

ασ(i+1) < ασ(i) if σ(i + 1) > σ(i)
(24)

satisfy the relation

F1...N F ∗
1...N =

∏
i<j

!ij (25)

where the diagonal matrix

[!ij ]βi ,βj

αi ,αj
= δαiβi

δαj βj


1 if αi = αj

bij if αi > αj

bji if αj > αi

(26)

acts in the pair of spaces i and j .

Proof. Taking into account the conditions (16) and (24) in sums
∑∗ and

∑∗∗ of the expressions
(15) and (22), respectively, one can write down the expression for the product F1...N F ∗

1...N in
the following form:

F1...N F ∗
1...N =

∑
σ∈SN

∑
σ ′∈SN

∑∗

ασ(1)...ασ(N)

∑∗∗

βσ ′(1)...βσ ′(N)

N∏
i=1

P σ(i)
ασ(i)

Rσ
1...N Rσ ′−1

σ ′(1)...σ ′(N)

N∏
i=1

P
σ ′(i)
βσ ′(i)

=
∑
σ∈SN

∑
σ ′∈SN

∑∗

ασ(1)...ασ(N)

∑∗∗

βσ ′(1)...βσ ′(N)

N∏
i=1

P σ(i)
ασ(i)

Rσ ′−1
σ

σ ′(1,...,N)

N∏
i=1

P
σ ′(i)
βσ ′(i) (27)

=
∑
σ∈SN

∑∗

ασ(1)...ασ(N)

N∏
i=1

P σ(i)
ασ(i)

Rσ
σ(N,...,1)

N∏
i=1

P σ(i)
ασ(i)

(28)

where the permutation σ reverses the order of the labels:

σ(1, . . . , N) = (N, . . . , 1).

In the line above (27) we have inserted the definitions of F and F ∗, equations (15) and (22),
respectively. Equality (27) is obtained by applying the composition rule (10). To prove equality
(28) we note first of all that any matrix Rσ provides maps such that the sets of sl(n) labels
of the incoming and outgoing states are connected by a permutation. (This property is easily
verified for matrices Rσ corresponding to elementary transpositions and it is preserved under
the composition of several transpositions.) However, the labels

{
ασ(i)

}
represent, according

to the prescription (16), a non-decreasing series (in (i)) of labels, whereas the
{
βσ ′(i)

}
(being

related to
{
ασ(i)

}
by a permutation) are according to (24) a non-increasing series. For these

two requirements to be fulfilled the equalities

βσ ′(N) = ασ(1) . . . βσ ′(1) = ασ(N) (29)

are necessary.
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Let us assume momentarily that all the labels βσ ′(i) (and hence the ασ(i)) are different from
each other. We want to show that equation (29) implies the equality

σ σ̄ = σ ′ (30)

for the matrix element(
Rσ ′−1

σ
σ ′(1,...,N)

)ασ(N)...ασ(1)

βσ ′(N)...βσ ′(1)

to be non-vanishing. Viewing Rσ ′−1
σ

σ ′(1,...,N) as a product of elementary R-matrices one observes
that the group label βσ ′(N) = ασ(1) can be transported from the lower left-hand corner to the
upper right-hand corner only if the space labels σ ′(N) and σ(1) are identical. Assume, in
contrast, that σ ′(N) is identical to some other element σ(x) �= σ(1). It would follow that the
group label βσ ′(N) could appear in the upper row only at the place with space label σ(x) or
on the left-hand side of it. (This restriction on the flow of group labels is a straightforward
consequence of the form of the elementary R-matrix, equation (1).) We conclude that we
have indeed to identify σ ′(N) with σ(1) to obtain a non-vanishing matrix element of R. The
identification of σ ′(N − 1) with σ(2), etc follows analogously from equation (30).

A glance at (16) and (24) confirms that equation (30) remains valid under general
circumstances, i.e. if some group labels βσ ′(i) and therefore ασ(j) occur repeatedly, since
the order of the space labels attached to the same group label is uniquely specified by these
prescriptions.

One deduces from (28) that FF ∗ is a diagonal matrix. A simple calculation leads to
the expression for the diagonal elements quoted in equation (26). (The product appearing on
the right-hand side of equation (25) is related to σ̄ as the latter is a maximal element of SN

and as such is representable as a product of N(N − 1)/2 elementary transpositions. Each
transposition is reflected in one factor of the product in equation (25).)

This completes the proof of proposition 3.2. �

We obtain from the formula (25) the expression for F −1
1...N :

F −1
1...N = F ∗

1...N

∏
i<j

!−1
ij . (31)

For the case of the sl(2) Yangian the formula (31) corresponds to the result of proposition 4.6
of [1].

4. sl(n) generators and the monodromy matrix in the F -basis

We will first determine the simple root sl(n) generators Ẽα,α±1 = F1...N Eα±α+1F −1
1...N and the

element T̃nn = F1...N TnnF −1
1...N of the monodromy matrix. The remaining sl(n) generators can

then be obtained from the simple ones through multiple commutators. The examination of the
full algebra can be found in appendix A. One may exploit the sl(n) invariance of the monodromy
matrix (with respect to its combined action in the quantum spaces and the auxiliary space, see,
e.g., [11]) to derive expressions for all elements T̃α β given T̃nn and the sl(n) generators.

One has, in particular, the relation

T̃nα = [
Ẽα,n, T̃nn

]
. (32)

The left-hand side of the latter equation originates from the action of the sl(n) generator in the
auxiliary space, whereas the right-hand side evidently reflects the corresponding action in the
quantum space.
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We will content ourselves to derive the explicit form of T̃nα using equation (32), since this
is all we need to build sl(n) Bethe wavevectors.

The simple root generators in the new basis differ from those in the original basis by a
diagonal dressing factor. We have

Proposition 4.1.

Ẽγ,γ ±1 =
N∑

i=1

E
(i)
γ,γ ±1 ⊗j �=i G±γ (i, j)[j ] (33)

where

Gγ (i, j)k,l = δkl

{
b−1

ij if k = γ

1 otherwise

G−γ (i, j)k,l = δkl

{
b−1

ji if k = γ + 1

1 otherwise.

(34)

Proof. Equations (33) and (34) specialized to the rational sl(2) case have been presented in
propositions 5.1 and 5.2 of [1]. The proof of these equations for the sl(n) model with arbitrary
n can be reduced to that of the sl(2) model. One has to note for this purpose that due to the
sl(n) invariance of the elementary R-matrices, one obtains the vanishing result[

Rσ
1...N , Eα,α±1

] = 0 (35)

for any permutation σ ∈ SN .
This allows us to write (cf equation (27))

Ẽγ,γ ±1 =
∑
σ∈SN

∑
σ ′∈SN

∑∗

ασ(1)...ασ(N)

∑∗∗

βσ ′(1)...βσ ′(N)

N∏
i=1

P σ(i)
ασ(i)

Eγ,γ ±1Rσ ′−1
σ

σ ′(1,...,N)

N∏
i=1

P
σ ′(i)
βσ ′(i)

∏
i<j

!ij . (36)

The collapse of the double sum
∑

σ,σ ′ into a single sum proceeds here along the same pattern as
above (in the transition from equation (27) to equation (28)). One has to further note that group
indices γ and (γ + 1) ((γ − 1), respectively) only occur in neighbouring positions concerning
ingoing and outgoing matrix indices because of the monotonicity prescription incorporated
into the sums

∑∗ and
∑∗∗, respectively. The rearrangement of the neighbouring labels γ and

(γ + 1) ((γ − 1), respectively) goes on according to sl(2) rules and produces the result quoted
in equation (34) and in [1]. Rearrangements involving group indices different from γ and
(γ + 1) ((γ − 1), respectively) are not affected by the presence of the generator Eγ,γ ±1, since
for those rearrangements the difference of γ and (γ + 1) ((γ − 1), respectively) is immaterial.

�

Proposition 4.2.

T̃nn(λ) = N⊗
i=1

diag{b(λ − zi), . . . , b(λ − zi), 1}. (37)
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Proof. Let us consider the action of the matrix F on Tnn

F1...N Tnn =
∑
σ∈SN

∑∗

ασ(1)...ασ(N)

N∏
i=1

P σ(i)
ασ(i)

Rσ
1...N P 0

n T0,1...N P 0
n

=
∑
σ∈SN

∑∗

ασ(1)...ασ(N)

N∏
i=1

P σ(i)
ασ(i)

P 0
n T0,σ (1)...σ (N)P

0
n Rσ

1...N . (38)

The specialization to the entry (n, n) of the auxiliary space is achieved here by the projectors
P 0

n . For the second equality in (38) we have used relation (8) and the obvious fact that P 0
n

commutes with Rσ
1...N . To simplify the following argument we distinguish in the sum

∑∗ cases
of various multiplicities of the occurrence of the group index n:

F1...N Tnn =
∑
σ∈SN

N∑
k=0

∑∗′

ασ(1)...ασ(N)

N∏
j=N−k+1

δασ(j),nP σ(j)
n

N−k∏
j=1

P σ(j)
ασ(j)

P 0
n T0,σ (1)...σ (N)P

0
n Rσ

1...N . (39)

Let us consider the prefactor of Rσ
1...N on the right-hand side of equation (39) more closely.

Using specific features of the R-matrices we can rewrite it as follows:

N−k∏
j=1

P σ(j)
ασ(j)

N∏
j=N−k+1

P σ(j)
n P 0

n T0,σ (1)...σ (N) P 0
n

=
N−k∏
j=1

P σ(j)
ασ(j)

(
R0,σ (N)

)nn

nn

(
R0,σ (N−1)

)nn

nn
. . .

(
R0,σ (N−k+1)

)nn

nn

×P 0
n T0,σ (1)...σ (N−k) P 0

n

N∏
j=N−k+1

P σ(j)
n

=
N−k∏
j=1

P σ(j)
ασ(j)

P 0
n T0,σ (1)...σ (N−k) P 0

n

N∏
j=N−k+1

P σ(j)
n

=
N−k∏
i=1

(
R0σ(i)

)n,ασ(i)

n,ασ(i)
P 0

n

N−k∏
j=1

P σ(j)
ασ(j)

N∏
j=N−k+1

P σ(j)
n . (40)

Inserting the right-hand side of (40) into equation (39) one sees that the product
∏

i

(
R0σ(i)

)n,ασ(i)

n,ασ(i)

provides the desired diagonal dressing factor of Tnn and the product of projectors applied to
Rσ restores F1...N .

This completes the proof of proposition 4.2. �

Given the simple root generators Ẽα,α±1 it is a straightforward task to evaluate the
generators corresponding to non-simple roots.

One finds, in particular,

Ẽn−α,n =
α∑

k=1

∑
i1 �=···�=ik

k−1∏
γ =1

η

ziγ − ziγ +1

∑
α=β0>β1...>βk=0

k⊗
l=1

E
(il)
n−βl−1,n−βl

⊗
j �=i1...ik

&
(j)

j ; i1...i1︸︷︷︸
β0−β1

i2...i2︸︷︷︸
β1−β2

... ik ...ik︸︷︷︸
βk−1−βk

(41)

where &j ;i1,...,iα = diag{1, . . . , 1, b−1
i1j , . . . , b−1

iαj , 1}.
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Exploiting the last equation and equation (32) one finally arrives at

T̃n n−α =
α∑

k=1

∑
i1 �=···�=ik

c(λ − zik )

k−1∏
γ =1

η

ziγ − ziγ +1

b(λ − ziγ )

×
∑

α=β0>β1>···>βk=0

k⊗
l=1

E
(il)
n−βl−1,n−βl

⊗
j �=i1...ik

!
(j)

j ; i1...i1︸︷︷︸
β0−β1

i2...i2︸︷︷︸
β1−β2

... ik ...ik︸︷︷︸
βk−1−βk

(42)

where !
(j)

j ;i1,...,iα
= diag{b(λ − zj ), . . . , b(λ − zj ), b(λ − zj ) b−1

i1j , . . . , b(λ − zj ) b−1
iαj , 1} is a

diagonal dressing matrix acting in j th space.

5. Bethe wavevectors

We give brief details concerning the description of the hierarchical Bethe ansatz and refer the
reader to [9, 11] for more details.

The operators Tnα(λ) (1 � α < n−1) serve in the sl(n) problem as quasiparticle creation
operators and the corresponding operators Tαn(λ) have the role of annihilation operators.

The Tnα(λ) satisfy the Faddeev–Zamolodchikov algebra

[Tnα(λ1), Tnα(λ2)] = 0

Tnα(λ1)Tnβ(λ2) = 1

b(λ2 − λ1)
Tnβ(λ2)Tnα(λ1) − c(λ2 − λ1)

b(λ2 − λ1)
Tnβ(λ1)Tnα(λ2)

(43)

where in the last relation α �= β.
An ansatz for a Bethe vector 'n is given in terms of a linear superposition of products of

operators Tnα acting on a reference state (
(n)
N :

'n(N; λ1, . . . , λp) =
∑

α1,...,αp

*α1,...,αp
Tnα1(λ1) . . . Tnαp

(λk) (
(n)
N (44)

where the reference state (
(n)
N is constituted as an N -fold tensor product of lowest-weight

states v(i)
n in C

(i)
n

(N = N⊗
i=1

v(i)
n

and the *α1,...,αp
denote some c-number coefficients.

It is important to note that the reference state is invariant under the F -transformation:

F (
(n)
N = (

(n)
N

since it is immediately obvious from the definition (15) of F that from the sum over the
permutation group only the term with the unit element inscribed gives a non-vanishing result
when applied to (

(n)
N .

It can be shown [9, 11] that 'n is an eigenvector of the transfer matrix t (λ) = ∑
i Tii(λ)

if

(a) the parameters λ1, . . . , λp satisfy a certain system of rational equations (the famous Bethe
ansatz equations), and if

(b) the c-number coefficients are chosen such that they constitute the components of a rational
sl(n − 1) transfer matrix.
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One establishes therewith a recursive procedure leading finally to an sl(2) eigenvalue problem.
We will keep the spectral parameters arising at the various stages of the procedure general,
instead of specializing them to solutions of the Bethe ansatz equations. In other words, we
keep the Bethe vector ‘off-shell’ [12]. Our goal in this paper is to figure out the functional
form of the Bethe wavevectors.

To start with we recall the form of the sl(2) wavevectors in the basis provided by Maillet
and Sanchez de Santos [1]. The creation operators with respect to the lowest-weight reference
state (in the special basis) are of the form

T̃21(λ) =
N∑

i=1

c(λ − zi)σ
(i)
+ ⊗

j �=i

(
b(λ − zj )b−1

ij 0
0 1

)
[j ]

. (45)

The ensuing Bethe wavevectors are given by

'2(N; λ1, . . . , λp) = T̃21(λ1) . . . T̃21(λp) (
(2)
N

=
∑

i1 �=···�=ip

B(2)
p (λ1, . . . , λp|zi1 , . . . , zip )σ (i1)

+ . . . σ
(ip)
+ (

(2)
N . (46)

The c-number coefficients B(2)({λi}|{zi}) of the last equation can easily be worked out, taking
into account the ‘diagonal dressing’ factors of the spin raising operators σ i

+ in (45), to be of
the form

B(2)
p (λ1, . . . , λp|z1, . . . , zp) =

∑
σ∈Sp

p∏
m=1

c(λm − zσ(m))

p∏
l=m+1

b(λm − zσ(l))

b(zσ(m) − zσ(l))
. (47)

A concise alternative representation of the coefficients B(2)
p has been derived in [4]:

B(2)
p (λ1, . . . , λp|zi1 , . . . , zip ) =

∏
i,j (λi − zj )∏

i>j (λi − λj )(zj − zi)
det
〈i,j〉

(
1

λi − zj

− 1

λi − zj + η

)
. (48)

The vectors '(2)
p (N; λ1, . . . , λp) are invariant under arbitrary exchanges of the variables

λ1, . . . , λp since operators T̃21 with different values of the attached spectral parameters do
commute with each other.

It has been shown in [11, 13] that this symmetric appearance of the spectral parameters
in the wavevectors '(n), n > 2 persists, despite the Faddeev–Zamolodchikov relations (43),
under the assumption that the coefficients *α1,...,αp

in (44) are components of an sl(n − 1)

Bethe wavevector. Our argument below will rely heavily on this exchange symmetry.
We now discuss the sl(3) model. The generalization to sl(n), n > 3 will subsequently be
rather obvious. Equation (42) specialized to the case of sl(3) renders the creation operators in
the F -basis as

T̃32 =
N∑

i=1

c(λ − zi)E
(i)
23 ⊗

j �=i
diag{b(λ − zj ), b(λ − zj )b−1

ij , 1}[j ] (49)

T̃31 =
N∑

i=1

c(λ − zi)E
(i)
13 ⊗

j �=i
diag{b(λ − zj )b−1

ij , b(λ − zj )b−1
ij , 1}[j ]

+
∑
i �=j

c(λ − zi)b(λ − zj )
η

zi − zj

E
(i)
23 ⊗ E

(j)

12

× ⊗
k �=i,j

diag{b(λ − zk)b−1
jk , b(λ − zk)b−1

ik , 1}[k]. (50)
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The strategy employed in determining the form of the Bethe wavevector (44) will be as follows.
We select a particular order in which the operators Tnα act on the reference state such that the
eventual explicit evaluation becomes as simple as possible. (This particular order can always be
achieved by use of the Faddeev–Zamolodchikov relations (43).) The c-number coefficient *(2)

has to be taken in the original basis and not in the F basis, but fortunately a particular coefficient
in the sum (44) (specialized to sl(3)) is invariant under the similarity transformation induced
by the F -matrices. This enables one to compute the explicit form of this special coefficient
*(2) using the result (47) and relate it to the order of operators alluded to in the preceding point
by an appropriate factor

∏
ij b−1(λi − µj ). One uses the permutation symmetry to determine

all other terms in the sum.
Following this line of thought we arrive at the following.

Proposition 5.1.

'̃3(N, λ1, . . . , λp0; λp0+1, . . . , λp0+p1) =
∑

σ∈Sp0

B(2)
p1

(λp0+1, . . . , λp0+p1 |λσ(1), . . . , λσ(p1))

×
p1∏

k=1

p0∏
l=p1+1

b(λσ(k) − λσ(l))
−1T̃32(λσ(p1+1)) . . . T̃32(λσ(p0))

×T̃31(λσ(1)) . . . T̃31(λσ(p1)) (
(3)
N . (51)

Proof. The proof of this formula proceeds as mentioned above.
We have specialized the form of the ansatz in equation (51) as compared with equation (44)

so that operators T̃32 are placed to the left of all operators T̃31. The latter order can be achieved by
moving the operators T̃32 in the general ansatz (44) to the required position with the help of the
Faddeev–Zamolodchikov relations (43). Let us consider, in particular, the vector contributing
in (44) of the form

T̃31(λ1) . . . T̃31(λp1)T̃32(λp1+1) . . . T̃32(λp0 ) (
(3)
N (52)

and let us relate it to the vector contributing in (51) of the form

T̃32(λp1+1) . . . T̃32(λp0 )T̃31(λ1) . . . T̃31(λp1) (
(3)
N . (53)

A diligent appreciation of the Faddeev–Zamolodchikov relations leads to the conclusion that
(53) has its unique origin in (52) and that, moreover, only the first term on the right-hand side
of (43) supplies contributions in the transition from (52) to (53). It follows that the transition
from (52) to (53) is accompanied by an additional factor

p1∏
x=1

p0∏
y=p1+1

1

b(λx − λy)
. (54)

The c-number coefficients *α1...αp
in (44) (when specialized to the case n = 3) refer to an sl(2)

Bethe wavevector in the familiar basis commonly used for the algebraic Bethe ansatz—not
that of Maillet and Sanchez de Santos.

However, we want to argue that the special coefficient *
(2)
1...12...2 (the factor which

accompanies the vector (53)) is, in fact, the same in both frames. One has to note first that
the similarity transformation by the F -matrices (specialized to the case of sl(3)) respects the
sl(2) structure. This means among other things that components only with the same number of
labels 1 and 2 are related to each other through the similarity transformation. One has secondly
to observe that in the transformation of *

(2)
1...12...2 no other components with a different order

of labels can appear due to the lower triangularity of F . (The matrix F would otherwise not
be lower triangular.)
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One finds thirdly through a direct examination of the definition of F that its diagonal
elements relating the coefficients *

(2)
1...12...2 in the two frames to each other are equal to unity.

Therefore, we know the coefficient *
(2)
1...12...2 to be of the Maillet–Sanchez de Santos form.

Invoking the above-mentioned exchange symmetry one completes the proof. �
The expression (51) for '̃3 can be worked out further by inserting the definitions (50) and

(49) of T̃31 and T̃32, respectively, to yield

'̃3(N, λ1, . . . , λp0; λp0+1, . . . , λp0+p1)

=
∑

i1 �=···�=ip0

B(3)
p0,p1

(λ1, . . . , λp0; λp0+1, . . . , λp0+p1 |zi1 , . . . , zip0
)

×E
(ip1+1)

23 . . . E
(ip0 )

23 E
(i1)
13 . . . E

(ip1 )

13 (
(3)
N . (55)

The order of operators adopted in equation (51) yields the bonus that the second term on the
right-hand side (the twofold sums) of (50) do not appear in (55), since those drop out if applied
to the reference state (N .

The sets of operators T̃31 and T̃32 generate through their respective diagonal dressing the
structure of two sl(2) wavevectors together with a factor which accounts for the way in which
the operators T̃32 respond to operators T̃31 on their right-hand side (cf equation (52)).

This completes our goal to reduce the sl(3) Bethe wavevectors to sl(2) structures:

B(3)
p0,p1

(λ1, . . . , λp0; λp0+1, . . . , λp0+p1 |zi1 , . . . , zip0
)

=
∑

σ∈Sp0

p1∏
k=1

p0∏
l=p1+1

b(λσ(l) − zik )

b(λσ(k) − λσ(l))
B

(2)
p0−p1

(λσ(p1+1), . . . , λσ(p0)|zip1+1 , . . . , zip0
)

×B(2)
p1

(λp0+1, . . . , λp0+p1 |λσ(1), . . . , λσ(p1))B
(2)
p1

(λσ(1), . . . , λσ(p1)|zi1 , . . . , zip1
).

(56)

All ingredients of our argument for the case of sl(3) can be straightforwardly generalized to
sl(n); n > 3.

We collect all operators T̃n n−α to the left of operators T̃n n−β if α < β. Once again only
the first term in the expression (42) of the respective operators T̃n n−i contributes in this special
ordering.

The wavefunction '̃n is then expressed in analogy to equation (55) by

'̃n(N, p0, p1, . . . , pn−2) =
∑

i1 �=···�=ip0

B(n)
p0,p1,...,pn−2

(λ1, . . . , λp0+···pn−2 |zi1 , . . . , zip0
)

×
n−1∏
α=1

pα−1∏
j=pα+1

E
(ij )

n−α n(
(n)
N (57)

with the following recursion relation for the function B(n):

B(n)
p0 p1 ... pn−2

(λ1, . . . , λp0+p1+···pn−2 |z1, . . . , zp0 )

=
∑

σ∈Sp0

n−2∏
α=1

pα∏
kα=pα+1+1

p0∏
lα=pα+1

b(λσ(lα) − zkα
)

b(λσ(kα) − λσ(lα))

×
n−2∏
γ =0

B
(2)
pγ −pγ +1

(λσ(pγ +1+1) . . . λσ(pγ )|zpγ +1+1 . . . zpγ
)

×B(n−1)
p1...pn−2

(λp0+1 . . . λp0+p1+···+pn−2 |λσ(1) . . . λσ(p1)). (58)



4976 T-D Albert et al

The resolution of the recursion gives

B(n)
p0 p1 ... pn−2

(λ1, . . . , λp0+p1+···+pn−2 |z1, . . . , zp0 )

=
∑

σ0∈Sp0

∑
σ1∈Sp1

. . .
∑

σn−3∈Spn−3

n−2∏
i=0

n−2∏
αi=i+1

pαi∏
kαi

=pαi +1+1

pi∏
lαi

=pαi
+1

× b(λqi−1+σi (lαi
) − λσi−1(kαi

))

b(λqi−1+σi (kαi
) − λqi−1+σi (lαi

))

×
n−2∏
γi=i

B
(2)
pγi

−pγi +1

(
λqi−1+σi (pγi+1+1) . . . λqi−1+σi (pγi

)|λσi−1(pγi+1+1) . . . λσi−1(pγi
)

)
×B(2)

pn−2

(
λqn−3+1 . . . λqn−3+pn−2 |λqn−4+σn−3(1) . . . λqn−4+σn−3(pn−2)

)
(59)

where by definition

qi =
i∑

j=0

pj q−1 = 0

and

λσ−1(k) = zk.

Equations (57) and (59) supply the explicit representation of the sl(n) wavevectors in terms
of sl(2) vectors, that is, the resolution of the Bethe hierarchy.

6. Conclusions

The form of the factorizing F -matrix presented in section 3 is of an intriguing simplicity. We
suspect that a representation theoretical aspect is lurking behind it which escapes our present
knowledge. It should be noted that we arrived at this ansatz by guesswork immediately for
the full F -matrix instead of taking the detour via partial F -matrices, as proposed in [1]. It
seems rather likely that we would have missed the simplicity of the ansatz if we had chosen
the approach via partial F -matrices.

Our original hope was to find a structure for the Bethe wavevectors which is as suggestive
as that displayed for the case of Gaudin magnets in [10]. This goal has not yet been achieved
completely since we are not in possession of an entirely satisfactory representation of sl(2)

wavevectors, which are the building blocks for the final formula (59) of section 5. The
representations (47) and (48) both have the drawback that they do display the singularity
structure of the wavevectors in a redundant manner. (The matter is discussed further in
appendix B.) We, nevertheless, nourish the hope that our findings will be of some help in
bringing effective large-n calculations of thermodynamical quantities within the range of the
algebraic Bethe ansatz method.
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Appendix A

In this appendix we verify the sl(n) algebra relations, taking the formulae for the generators
Ẽα,α±1 of section 4 as a starting point.

We use the following defining relations for a semisimple Lie algebra [14].
Fix a root system with a basis {α1, . . . , αl}. Let L be the Lie algebra generated by three l

elements {E+αi
, E−αi

, Hi; 1 � i � l}. L is uniquely determined by the relations

S1
[
E+αi

, E−αj

] = δij Hαi

S2
[
Hαi

, E±αj

] = ±AjiE±αj

S3
[
Hαi

, Hαj

] = 0

S4†
(
adE

αi±

)1−Aji
(
E

αj

±
) = 0 i = 1, . . . , l i �= j

with Aij = 2 (αi ,αj )

(αj ,αj )
denoting the Cartan matrix.

We recall from section 4 the expressions for the generators of the algebra sl(n)

corresponding to simple roots:

Ẽ+α =
N∑

i=1

E(i)
+α ⊗

j �=i

(
1lN +

η

zi − zj

eα α

)
[j ]

≡
N∑

i=1

E(i)
+α ⊗

j �=i
�α

(i,j)

Ẽ−α =
N∑

i=1

E
(i)
−α ⊗

j �=i

(
1lN +

η

zj − zi

eα+1 α+1

)
[j ]

≡
N∑

i=1

E
(i)
−α ⊗

j �=i
�̃α

(j,i)

(A1)

where (eij )kl = δikδjl are the elementary matrices and
(
E

(k)
+α

)
ij

= δα iδα+1 j ,
(
E

(k)
−α

)
ij

=
δα+1 iδα j are the simple roots of sl(n) acting in the kth space.

Using their definitions one has‡[
Ẽ+α, Ẽ−β

] =
∑

i

[
E(i)

+α, E
(i)
−β

] ⊗
j �=i

�α
(i,j)�̃

β

(j,i)

+
∑′

i,j

(
E(i)

α �̃−β

(i,j) ⊗ �α
(i,j)E

(j)

−β − �̃−β

(i,j)E
(i)
α ⊗ E

(j)

−β�α
(i,j)

) ⊗
k �=i,j

�α
(i,k)�̃

−β

(j,k)

=
∑

i

δα βH (i)
α ⊗

j �=i
�α

(i,j)�̃
α

(j,i) (A2)

where we have exploited the fact that the second sum vanishes term by term identically for all
{α, −β}.

The dressing can be written as �α
(i,j)�̃

α

(j,i) = 1l[j ] + η

zi−zj
H

(j)
α , because (Hα)ij =

δα iδα j − δα+1 iδα+1 j .
Against to first appearance the Cartan operators Hα remain without dressing. For this

purpose we consider the expression

N⊗
i=1

(
1l[i] +

η

λ − zi

H (i)
α

)
= 1l[N ] +

N∑
i=1

η

λ − zi

H (i)
α ⊗

j �=i

(
1l[j ] +

η

zi − zj

H (j)
α

)
. (A3)

This identity can be proved by noting that both sides have the same limit for λ → ∞ and that
the residues at the simple poles λ = zi are identical. If we now consider the order 1/λ in the

† (adx)n is a shorthand notation for adx ◦ adx ◦ · · · ◦ adx︸ ︷︷ ︸
n times

, such that, for example, (adx)2(y) = [x, [x, y]].

‡
∑′

i,j means
∑

i,j i �=j .
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expansion of both sides we obtain∑
i

H (i)
α ⊗

j �=i
1l[j ] =

∑
i

H (i)
α ⊗

j �=i

(
1l[j ] +

η

zi − zj

H (j)
α

)
=

∑
i

H (i)
α ⊗

j �=i
�α

(i,j)�̃
α

(j,i) (A4)

which concludes the proof that the Cartan operators associated with the simple roots acquire no
dressing, which in turn renders the proof of the commutativity of the Cartan operators trivial.
To prove the Serre relation(

ad
Eαi

±

)1−Aji
(
Eαj

±
) = 0 i = 1, . . . , N − 1; i �= j (A5)

we have to distinguish two cases:

(a) |j − i| = 1
[
Eαi

± ,
[
Eαi

± , Eαj

±
]] = 0

(b) |j − i| > 1
[
Eαi

± , Eαj

±
] = 0

(A6)

as all other matrix elements of the Cartan matrix are zero. (For sl(n) we have Aii = 2,
Ai+1 i = Ai i+1 = −1 and Aij = 0 otherwise.)

To proceed with the proof we list some useful relations:(
E+α �β

(i,j)

) = d
β

α+1(i, j) E+α(�β

(i,j) E+α

) = dβ
α (i, j) E+α(

E−α �β

(i,j)

) = dβ
α (i, j) E−α(�β

(i,j) E−α

) = d
β

α+1(i, j) E−α

(A7)

where dβ
α (i, j) means the αth element on the diagonal of the matrix �β

(i,j).
We now look at the first case of (A6) and show the argument for the positive roots:[

Ẽα, Ẽβ

] =
∑

i

[
E(i)

α , E
(i)
β

] ⊗
j �=i

�α
(i,j)�β

(i,j) +
∑′

i,j

η

zj − zi

E(i)
α ⊗ E

(j)

β ⊗
k �=i,j

�α
(i,k)�β

(j,k)

(A8)

and thus[
Ẽα,

[
Ẽα, Ẽβ

]] =
∑

i

[
E(i)

α ,
[
E(i)

α , E
(i)
β

]] ⊗
j �=i

�α
(i,j)�α

(i,j)�β

(i,j)

+
∑′

i,j

(
E(i)

α �α
(j,i)�β

(j,i) ⊗ �α
(i,j)

[
E(j)

α , E
(j)

β

]
−�α

(j,i)�β

(j,i)E
(i)
α ⊗ [

E(j)
α , E

(j)

β

]�α
(i,j)

)
⊗

k �=i,j
�α

(i,k)�α
(j,k)�β

(j,k)

+
∑′

i,j

η

zj − zi

(
E(i)

α E(i)
α ⊗ �α

(i,j)E
(j)

β − E(i)
α E(i)

α ⊗ E
(j)

β �α
(i,j)

)
× ⊗

k �=i,j
�α

(i,k)�α
(j,k)�β

(j,k) +
∑′

i,j

η

zj − zi

(
�α

(j,i)E
(i)
α ⊗ E(j)

α E
(j)

β

−E(i)
α �α

(j,i) ⊗ E
(j)

β E(j)
α

)
⊗

k �=i,j
�α

(i,k)�α
(j,k)�β

(j,k)

+
∑′

i,j,k

η

zk − zj

(
E(i)

α �α
(j,i)�β

(k,i) ⊗ �α
(i,j)E

(j)
α ⊗ �α

(i,k)E
(k)
β

−�α
(j,i)�β

(k,i)E
(i)
α ⊗ E(j)

α �α
(i,j) ⊗ E

(k)
β �α

(i,k)

)
⊗

l �=i,j,k
�α

(i,l)�α
(j,l)�β

(k,l). (A9)
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The first term in this sum vanishes due to the Serre relation for the undressed operators, and
the third because EαEα = 0.

The second and the fourth terms cancel each other, while the last term vanishes for fixed
k, since the bracket yields

η

zk − zj

((
1 +

η

zk − zi

)(
1 +

η

zi − zj

)
−

(
1 +

η

zj − zi

))
E(i)

α ⊗ E(j)
α ⊗ E

(k)
β (A10)

which is antisymmetric under the exchange of i and j .
The second case of (A6) yields[

Ẽα, Ẽβ

] =
∑

i

[
E(i)

α , E
(i)
β

] ⊗
j �=i

�α
(i,j)�β

(i,j)

+
∑′

i,j

(
E(i)

α �β

(j,i) ⊗ �α
(i,j)E

(j)

β − �β

(j,i)E
(i)
α ⊗ E

(j)

β �α
(i,j)

)
⊗

k �=i,j
�α

(i,k)�β

(j,k)

(A11)

where the first term in the sum vanishes due to the assumption for the undressed operators and
the second term vanishes as the bracket is zero for |α − β| > 1.

The proof for the Ẽαi

− proceeds along the same lines.
We proceed to give the form of the non-simple roots which can be obtained as multiple

commutators of simple roots (proof by induction on α)

Ẽi−α i = [
Ẽi−α i−α+1, . . . ,

[
Ẽi−3 i−2,

[
Ẽi−2 i−1, Ẽi−1 i

]]
. . .

]
=

α∑
k=1

∑
i1 �=···�=ik

k−1∏
γ =1

η

ziγ − ziγ +1

∑
α=β0>β1>···>βk=0

k⊗
l=1

E
(il)
i−βl−1, i−βl

× ⊗
j �=i1...ik

&
(j)

ik ...ik︸︷︷︸
β0−β1

ik−1...ik−1︸ ︷︷ ︸
β1−β2

...
i1...i1︸︷︷︸

βk−1−βk

;j ;i
(A12)

with &
(j)

j ;ik ...ik ik−1...ik−1...i1...i1;i = diag{1, . . . , 1, b−1
ikj , . . . , b−1

i1j , 1, . . . , 1︸ ︷︷ ︸
i

}[j ].

A similar formula holds for the negative roots

Ẽi i−α =
α∑

k=1

∑
i1 �=···�=ik

k−1∏
γ =1

η

ziγ − ziγ +1

∑
α=β0>β1>···>βk=0

k⊗
l=1

E
(il)
i−βl , i−βl−1

× ⊗
j �=i1...ik

&
(j)

ik ...ik︸︷︷︸
β0−β1

ik−1...ik−1︸ ︷︷ ︸
β1−β2

...
i1...i1︸︷︷︸

βk−1−βk

;j ;i
(A13)

with &
(j)

j ;ik ...ik ik−1...ik−1...i1...i1;i = diag{1, . . . , 1, b−1
jik

, . . . , b−1
ji1

, 1, . . . , 1︸ ︷︷ ︸
i−1

}[j ].

Appendix B

In this appendix we discuss further details of the structure of the coefficients (cf equation (48))

B(2)
p (λ1, . . . , λp; zi1 , . . . , zip ) =

∏
ij (λi − zj )∏

i>j (λi − λj )
∏

i>j (zj − zi)
det X

Xij = 1

λi − zj

− 1

λi − zj + η
. (B1)
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This representation, as concise as it is, has the disadvantage that it does not reflect the
singularity structure in an economic way (the poles in the prefactor on the right-hand side of
(B1) are cancelled by zeros in the determinant).

One may cure the defect by appropriate manipulations on the determinant in (B1).
Subtracting, for example, the last row of X from all the others, extracting a rational factor
from the nth row and proceeding in the same spirit with the (n − 1)th row and consecutively
other rows one arrives at the equality

B(2)
p (λ1, . . . , λp; zi1 , . . . , zip ) = 1∏

i<j (zj − zi)

1∏
ij (λi − zj + η)

det Y

Yα,x = Pα(λ; zpx
)

Pα(λ; zpx
) =

{
n−α∏
i=0

(λn−i − zpx
+ η) −

n−α∏
i=0

(λn−i − zpx
)

}
α−1∏
j=1

(λj − zpx
+ η)(λj − zpx

).

(B2)

One should note that the polynomial Pα depends on all λ-variables but only on a single z

variable. It follows that one can continue to extract polynomial factors from the determinant
in (B2) by subtraction of columns from columns. The ensuing differences Pα(λ, zpx

) −
Pα(λ, zpy

) supply the desired factors (zpx
−zpy

) which compensate the pole factors 1∏
i>j (zi−zj )

in (B2).
Unfortunately, we have not found a concise closed form for the polynomial multiplying

the remaining prefactor 1∏
ij (λi−zj +η)

in the final expression.
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